스킬 젬 /1
이름 |
---|
바알 은총 |
아이템 속성 부여 /1
이름 | 레벨 | Pre/Suf | Description | Weight |
---|---|---|---|---|
45 | ScourgeDownside | 명중 시 피해에 불운 적용 | 목걸이 500 Normal 0 |
장막 속성 부여 /1
이름 | 레벨 | Pre/Suf | Description | Weight |
---|---|---|---|---|
- 질서 | 60 | 접미어 | 집중하는 동안 치명타 확률에 행운 적용 집중의 재사용 대기시간 회복 속도 (5–8)% 증가 grant focus skill [1] 치명타 | 허리띠 1000 Normal 0 |
작업대 /1
Mod | Require | ItemClasses | 잠금 해제 |
---|---|---|---|
집중하는 동안 치명타 확률에 행운 적용 grant focus skill [1] | 9x ![]() | 허리띠 | 배신 장막 해제 |
기타 속성 부여 /4
이름 | 레벨 | Domain | Pre/Suf | Description | Weight |
---|---|---|---|---|---|
1 | MapDevice | 고유 | 역병 상자 5개에 들어 있는 아이템의 종류에 행운 적용 무리 규모 6% 증가 | ||
1 | MapDevice | 고유 | 역병 상자 12개에 들어 있는 아이템의 종류에 행운 적용 무리 규모 6% 증가 | ||
1 | MapDevice | 고유 | 역병 상자 18개에 들어 있는 아이템의 종류에 행운 적용 무리 규모 6% 증가 | ||
- 역병 | 68 | MapRelic | 접미어 | 지도 내 역병 상자 (3–5)개에 들어 있는 아이템의 종류에 행운 적용 | atlas_relic_very_large 800 Normal 0 |
아이템 /1

고레벨 속성 부여 등장 빈도 증가
고유 /14
3% 증가 효과로 대체
3% 증가 효과로 대체
플레이어가 항상 치명타로 명중
플레이어 피격 시 항상 치명타로 피격
공격으로 플레이어 명중 불가
플레이어에 대한 공격이 항상 명중
명중 시 주는 피해에 행운 적용
플레이어 피격 시 받는 피해에 행운 적용
전직 Passive /4
스킬 군 주얼 Passive /1
Community Wiki
Luck
Luck is a mechanic that rolls a number twice, with Lucky rolls applying the best result, and Unlucky rolls applying the worst result. Modifiers that state when Damaging refer specifically to damage ranges, and not related mechanics such as accuracy or critical strike chance.
Lucky and Unlucky modifiers affecting the same thing will cancel each other out.
Effectiveness
With percentage rolls, such as critical strike chance, lucky/unlucky rolls will be up to a 100% more/less modifier, changing linearly towards 0% as critical chance increases. As for damage rolls, the average damage from the roll will be at up to 33% more or less, when the minimum damage is close to zero, but will have a much weaker effect when the minimum damage is closer to the maximum.
Calculations
Binary Rolls
More specifically, the lucky critical strike chance can be calculated from the following formula:
For example, the lucky critical strike chance for an default critical strike chance of 40% could be calculated as follows:
It should be noted that these calculations neglect the effect of accuracy on critical strikes.
Damage in a Range
Given an integer roll between and
, the normal expected value is
.
A lucky roll has expected value
Note that the last term in this is always between 0 and 1/6 This simplifies the formula to .
The average damage is effectively nudged closer toward the max damage, and further from the minimum damage. The damage boost, on average, is a sixth of the difference between minimum and maximum damage.
Example 1: You shoot a level 20 Fireball. The maximum damage is 1643, and minimum damage is 1095, for an average of 1369. The difference between minimum and maximum is 548. If the damage is lucky, you get an average 548/6=91.3 extra damage, for a new average damage of 1369+91.3=1460.3 damage. This is a 6.6% damage boost.
Example 2: You cast a level 20 Spark. The maximum damage is 1198, and minimum damage is 63, for an average of 630.5. The difference between minimum and maximum is 1135. If the damage is lucky, you get an average 1135/6=189.2 extra damage, for a new average damage of 189.2+630.5=819.6 damage. This is a 30% damage boost.
How much does lucky improve our expected value - if our minimum damage is 0 then we get a 33% more multiplier. As the minimum damage increases our percentage increase decreases.
Wikis Content is available under CC BY-NC-SA 3.0 unless otherwise noted.